Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. - PDF Download Free (2024)

Accepted Manuscript Title: Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions Author: Roc´ıo P´erez-Masi´a Jose M. Lagaron Amparo L´opez-Rubio PII: DOI: Reference:

S0144-8617(13)00924-7 http://dx.doi.org/doi:10.1016/j.carbpol.2013.09.032 CARP 8121

To appear in: Received date: Revised date: Accepted date:

26-7-2013 11-9-2013 13-9-2013

Please cite this article as: P´erez-Masi´a, R., Lagaron, J. M., & L´opez-Rubio, A., SURFACTANT-AIDED ELECTROSPRAYING OF LOW MOLECULAR WEIGHT CARBOHYDRATE POLYMERS FROM AQUEOUS SOLUTIONS, Carbohydrate Polymers (2013), http://dx.doi.org/10.1016/j.carbpol.2013.09.032 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

SURFACTANT‐AIDEDELECTROSPRAYINGOFLOWMOLECULARWEIGHT

2

CARBOHYDRATEPOLYMERSFROMAQUEOUSSOLUTIONS

4

RocíoPérez‐Masiá,JoseM.Lagaron,AmparoLópez‐Rubio*

5

NovelMaterialsandNanotechnologyGroup,Instituteofa*grochemistryandFood

6

Technology(IATA‐CSIC),Avda.AgustinEscardino7,46980Paterna(Valencia),Spain

7

8

*Correspondingauthor:Tel.:+34963900022;fax:+34963636301.

9

E‐mailaddress:[emailprotected](A.Lopez‐Rubio)

cr

us

an

10

ip t

3

Ac ce p

te

d

M

11

1

Page 1 of 27

Abstract

12

Inthisworkitisdemonstrated,forthefirsttime,thatitisfeasibletodevelop,usingthe

13

electrosprayingtechnique,lowmolecularweightcarbohydrate‐basedcapsulemorphologies

14

fromaqueoussolutionsthroughtherationaluseofsurfactants.Twodifferentlowmolecular

15

weightcarbohydratepolymerswereused,amaltodextrinandacommercialresistantstarch.

16

Thesolutionpropertiesandsubsequenthighvoltagesprayabilitywasevaluateduponaddition

17

ofnon‐ionic(Tween20,andSpan20)andzwitterionic(lecithin)surfactants.Themorphology

18

andmolecularorganizationofthestructuresobtainedwascharacterizedandrelatedtothe

19

solutionproperties.Resultsshowedthat,whileunstablejettinganddroppingoccurredfrom

20

thepurecarbohydratesolutionswithoutsurfactant,theadditionofsomesurfaceactive

21

moleculesabovetheircriticalmicelleconcentrationfacilitatedcapsuleformation.Higher

22

surfactantconcentrationsledtosmallerandmorehom*ogeneouscapsulemorphologies,

23

relatedtolowersurfacetensionandhigherconductivityofthesolutions.

24

25

Keywords:Electrospraying,electrospinning,encapsulation,surfactant,aqueoussolution,

26

carbohydrate

Ac ce p

te

d

M

an

us

cr

ip t

11

2

Page 2 of 27

1.Introduction

28

Thedevelopmentofmicro‐,submicro‐andnanostructuresfrombiopolymersforfunctional

29

foodapplicationsisanemergingareaofinterest.Apartfromtheconventional

30

microencapsulationtechniques,suchasspraydryingorcoarcervation,electrospinninghas

31

beenrecentlysuggestedtobeasimpleandstraightforwardmethodtogeneratesubmicron

32

encapsulationstructuresforavarietyofbioactivemolecules(Xie,Li&Xia,2008;Lopez‐Rubio

33

&Lagaron,2012;Bock,Dargaville,&Woodruff,2012).Electrospinningisaprocessthat

34

producescontinuouspolymerfiberswithdiametersinthesubmicrometerrangethroughthe

35

actionofanexternalelectricfieldimposedonapolymersolutionormelt.Theelectrospun

36

nanostructuresmorphologyisaffectedbythesolutionproperties(mainlybytheviscosity,

37

surfacetensionandconductivityofthepolymersolution)andbytheprocessparameters

38

(voltage,flowrateofthesolution,tip‐to‐collectordistance).Forcertainmaterials,size‐reduced

39

capsulescanbeobtainedwhenloweringthepolymerconcentrationand/orincreasingthetip‐

40

to‐collectordistance.Inthiscase,theelectrospinningprocessisnormallyreferredtoas

41

“electrospraying”duetothenon‐continuousnatureofthestructuresobtained.Todate,a

42

widevarietyofpolymersandpolymerblendshavebeenelectrospun,withsyntheticpolymers

43

yieldingthebestresultsintermsofphysicalpropertiesanduniformity.Ontheotherhand,

44

electrospinningofbiopolymersolutionshasbeenproventobedifficultduetoseveralfactors

45

suchasthepolycationicnatureofmanybiopolymers,thelowchainflexibilitywhich

46

complicateschainentanglements(essentialforfiberformation)andtheirgenerallypoor

47

solubilityinorganicsolvents(Kriegel,Kit,McClements,&Weiss,2009).Moreover,unlike

48

syntheticpolymers,anaturalpolymerderivedfromdifferentsourcespresentswidelyvarying

49

propertiesandithasbeenobservedthattheviscosityofthesolutionsmayvarywithtimedue

50

to,forinstance,aqueoushydrolysisofthebiopolymer(Bhattarai&Zhang,2007).

51

Electrospinningfromaqueoussolutionsisbeneficialfromanenvironmentalpointofview.

52

Furthermore,theuseofwaterdoesnotgeneratetoxicityproblems.Onthecontrary,organic

Ac ce p

te

d

M

an

us

cr

ip t

27

3

Page 3 of 27

solventsmaybeevenprohibitedforcertainapplications,suchasinthecaseoffoodproducts

54

(Kriegel,Kit,McClements,&Weiss,2010).Thatissuefurthercomplicatestheelectrospinning

55

processduetotheionizationofwatermoleculesathighvoltagesinanairenvironment,which

56

maycausecoronadischarge.Besides,aqueoussolutionspresenthighsurfacetensionvalues

57

whichhindertheformationofstablejetsduringtheelectrospinning.Moreover,polymersthat

58

havelowaqueoussolubility,lowMwpolymersandpolymerswithrigidorglobularstructures

59

thatdonotgeneratesufficientviscosityarenoteasilyelectrospunwhentheyareinan

60

aqueoussolution(Nagarajan,Drew,&Mello,2007;Stijnman,Bodnar&Tromp,2011).

61

Differentsurfactantshavebeenaddedtotheelectrospinningsolutionsforvariouspurposes,

62

likeenzymestabilization(Herricksetal.,2005),creationofmesoporousstructures(Hong,Fan,

63

&Zhang,2009;Houetal.,2009),ortomakecompatiblehydrophilicfillerswithhydrophobic

64

matrices(Kim,Lee,&Knowles,2006).However,moreimportantly,surfactantshavebeenseen

65

toimprovethespinnabilityofpolymersolutions,whichisnormallyaconsequenceofthe

66

reductionintheirsurfacetension(Boninoetal.,2011).Tothebestofourknowledge,allthe

67

studiescarriedouttodateinthisarea,relatetofiberformationandithasbeendemonstrated

68

thatadditionofsurfactantsreducefiberdefects,butdonotpromotefiberformationfor

69

solutionswhicharenotreadilyspinnable(Aceituno‐Medina,Lopez‐Rubio,Mendoza,&

70

Lagaron,2013).However,theeffectofsurfactantadditiononthesprayabilityorcapsule

71

formationfrombiopolymersolutionsisunknown.

72

Inthisstudy,wehypothesizethatadditionofsurfactantstoaqueousbiopolymersolutionsmay

73

provetobeaconvenientmethodtoproduceencapsulationstructuresbymodulatingthe

74

electrosprayingconditions.Totestthishypothesis,varioussurfactants(azwitterionicandtwo

75

nonionicsurfactants)wereaddedtotwodifferentlowmolecularweightcarbohydratepolymer

76

solutions.Solutionsweresubjectedtoelectrosprayingandtheinfluenceofsurfactanttypeand

77

chargeonsolutionpropertiesandonthemorphologyofthesubmicronstructuresgenerated

78

wereevaluated.

Ac ce p

te

d

M

an

us

cr

ip t

53

79

4

Page 4 of 27

2.MaterialsandMethods

80

2.1Materials

81

AmaltodextrinwithaDEvalueof16.5‐19.5waspurchasedfromSigmaAldrich.Acommercial

82

resistantstarch(derivedfromcornstarch)withtradenameFibersol®(www.fibersol.com)

83

manufacturedbyADM/Matsutani(Iowa,USA)wasused.Thenon‐ionicsurfactants,

84

polyoxyethylenesorbitanmonolaureate(Tween20)andsorbitanmonolaureate(Span20),and

85

thezwitterionicsurfactant,L‐α‐phosphatidylcholine(lecithin)weresuppliedbySigma‐Aldrich.

86

Allproductswereusedasreceivedwithoutfurtherpurification.

87

88

2.2Determinationofthecriticalmicelleconcentrations(CMC)foreachsurfactantbyplate

89

tensiometry

90

TheCMCofsurfactantsintheabsenceandpresenceofthelowmolecularweightcarbohydrate

91

polymerswasdeterminedbymeasuringthesurfacetensionasafunctionofsurfactant

92

concentrationthroughadigitaltensiometer(modelEasyDyneK20,KrüssGmbH,Hamburg,

93

Germany)usingtheWilhemyplatemethod.Anamountof30gofeachtestsolutionwas

94

pouredintoan80mmdiameterglassbeaker.Theglasshadbeenpreviouslyrinsedwith

95

absoluteethanolanddeionizedanddistilledwaterandthendriedat70ºCtoremoveany

96

surface‐activematerial.Allmeasurementsweredoneintriplicateafterequilibratingthe

97

solutionsat25ºC.

98

99

2.3Preparationofcarbohydrate‐basedsolutions

Ac ce p

te

d

M

an

us

cr

ip t

79

100

Carbohydrate‐basedsolutionswerepreparedbydissolvinga20wt.‐%ofthematerialsin

101

distilledwaterthroughgentlestirringatroomtemperature.Differentconcentrationsofthe

102

varioussurfactants(0,5,and30wt.‐%withrespecttothebiopolymerweight)wereaddedto

103

thesolutions.

104

5

Page 5 of 27

2.4Characterizationofthecarbohydrate‐basedsolutions

106

Theapparentviscosity(ηa)ofthepolymericsolutionsat100s‐1wasdeterminedusinga

107

rotationalviscositymeterViscoBasicPlusLfromFungilabS.A.(SanFeliudeLlobregat,Spain)

108

usingaLowViscosityAdapter(LCP).Thesurfacetensionofthebiopolymersolutionswas

109

measuredusingtheWilhemyplatemethodinanEasyDyneK20tensiometer(KrüssGmbH,

110

Hamburg,Germany).Bothtestswerecarriedoutintriplicate.Theconductivityofthesolutions

111

wasmeasuredusingaconductivitymeterXSCon6(Labbox,Barcelona,Spain).All

112

measurementsweremadeat25ºC.

113

114

2.5Preparationofcarbohydrate‐basedcapsulesthroughelectrospraying

115

Theelectrospinningapparatus,equippedwithavariablehigh‐voltage0‐30kVpowersupply,

116

wasasingleneedleFluidnatek®basicsetupfromBioiniciaS.L.(Valencia,Spain).Thesyringe

117

containingthecarbohydratesolutionswasplacedhorizontallytothecollector.Thedistance

118

betweentheneedleandthecollectorwassetat10cm.Theexperimentalsetupwashousedin

119

alaminarflowsafetycabinet.Theelectrosprayedcapsuleswereobtainedusingavoltageof9

120

kVandaflowrateof0.15mL/h.

121

122

2.6Infraredspectroscopy

123

Attenuatedtotalreflectanceinfraredspectroscopy(ATR‐FTIR)experimentswereperformedin

124

acontrolledchamberat21oCand40%RHcouplingtheATRaccessoryGoldenGateofSpecac

125

Ltd.(Orpington,UK)toaBruker(Rheinstetten,Germany)FTIRTensor37equipment.Allthe

126

spectrawerecollectedwithinthewavenumberrangeof4000–600cm‐1byaveraging15scans

127

at4cm‐1resolution.AnalysisofthespectraldatawasperformedbyusingGrams/AI7.02

128

(GalacticIndustries,Salem,NH,USA)software.

129

130

2.7Scanningelectronmicroscopy(SEM)

Ac ce p

te

d

M

an

us

cr

ip t

105

6

Page 6 of 27

SEMwasconductedonaHitachimicroscope(HitachiS‐4100)atanacceleratingvoltageof10

132

KVandaworkingdistanceof15mm.Theelectrosprayedcapsulesweresputteredwithagold‐

133

palladiummixtureundervacuumbeforetheirmorphologywasexaminedusingSEM.Capsule

134

diametersoftheelectrosprayedmaterialsweremeasuredbymeansoftheAdobePhotoshop

135

CS3extendedsoftwarefromtheSEMmicrographsintheiroriginalmagnification.

136

cr

ip t

131

Ac ce p

te

d

M

an

us

137

7

Page 7 of 27

3.ResultsandDiscussion

138

3.1Criticalmicelleconcentration(CMC)ofthedifferentsurfactants

139

Surfactantsareamphiphilicmoleculesthatreadilyabsorbatsurfaces,therebyloweringsurface

140

orinterfacialtensionofthemediuminwhichtheyaredissolved.Moreover,aboveacritical

141

concentration,theso‐calledcriticalmicelleconcentration,surfactantsself‐assembletoforma

142

varietyofcolloidalstructures,whichhavedifferentpropertiesfromthoseofthedissolved

143

surfactantmonomers,e.g.,solubility,surfacehydrophilicity,chargedensity.Previousstudies

144

havedemonstratedthatadditionofnon‐ionicandionicsurfactantsabovetheircriticalmicelle

145

concentrationtopolymersolutions,significantlyimprovedtheelectrospinningprocess

146

generatingdefect‐freefibers(Kriegeletal.,2009).Therefore,inthisstudy,thefirstintention

147

wastoadddifferentsurfactantsabovetheirCMCtostudytheirinfluenceonthesprayabilityof

148

lowMwcarbohydrates.TheCMCinformsabouttheconcentrationofsurfactantnecessaryto

149

formamonolayerofmoleculesorientedattheair‐waterinterface(Lin,Wang,Wang&Wang,

150

2004;Chou,Krishnamurthy,Randolph,Carpenter&Manning,2005).Ontheotherhand,the

151

concentrationneededforthepolymer‐surfactantassociationisthecriticalaggregation

152

concentration(CAC)anditisusuallylowerthantheCMCbyafactorbetween1and10.Both

153

thesurfactantconcentrationandthepolymer‐surfactantinteractionsmayresultinchangesin

154

therheologyandconductivityofthesolutions,factorswhichgreatlyaffectthe

155

electrospinning/electrosprayingprocess(Linetal.2004).

156

Initially,thesurfacetensionfordifferentsurfactantconcentrationsinaqueoussolutioninthe

157

absenceandpresenceofthelowmolecularweightcarbohydrateswasmeasuredandCMC

158

valuesweredeterminedwhentheplateauinsurfacetensionwasobtained.Table1showsthe

159

CMCvaluesforthedifferentsurfactantsassayedandtheconcentrationaddedinthesolutions.

160

Forallthesolutionstesteditwasobservedthatverylowconcentrationsofthesurfactants

161

wereneededtoreachtheCMC,regardlessofwhetherthecarbohydrateswerepresent.Itwas

162

alsoobservedthatCMCincreasedwiththeadditionofthebiopolymersprobablybecausethe

Ac ce p

te

d

M

an

us

cr

ip t

137

8

Page 8 of 27

surfactantswerealsointeractingwiththebiopolymersinsolution.Itispossiblethatinthe

164

presenceofcarbohydrates,theconcentrationofthesurfactantsinthesurfacedecreased,as

165

partofthesurfactantwasboundtothecarbohydrates.Asaresult,theamountofsurfactant

166

neededtoreachtheCMCincreased(Chouetal.,2005).Knowingthisplateauvalue,two

167

differentconcentrationsofeachsurfactant(5and30wt.%)wereaddedtothecarbohydrate

168

solutions,whichcorrespondedto28.9mMofSpan20,8.2mMofTween20and13.2mMof

169

lecithinwhen5%ofsurfactantwithrespecttothebiopolymerweightwasadded;and173.2

170

mMofSpan20,49.0mMofTween20and79.0mMoflecithinwhen30%ofsurfactantwith

171

respecttothebiopolymerweightwasincorporated.Pleasenotethatbothconcentrations

172

werewellhigherthantheCMCofthesurfactants.

173

174

INSERTTABLE1ABOUTHERE

175

176

3.2Solutionproperties

177

Thephysicalpropertiesofthecarbohydrate‐surfactantsolutionsarecriticalinthesuccessful

178

preparationoftheelectrosprayedstructures.Therefore,theconductivity,viscosityandsurface

179

tensionofthedifferentsolutionsweremeasuredandtheresultsaresummarizedinTable2.

180

Fromthesedataitisobservedthattheadditionofresistantstarchtowaterdidnot

181

considerablyincreasetheconductivityofthesolventbecausethismaterialdidnotpresentany

182

electricalcharge.Onthecontrary,themaltodextrin‐basedsolutionspresentedenhanced

183

conductivityvalues.Thisfactcouldbeduetomaltodextrinformingchargedionswhen

184

dissolvedinwater.FromTable2,itisalsoobservedthatadditionofnon‐ionicsurfactantsto

185

theresistantstarchsolutionsproducedaslightincreaseintheconductivity,probablydueto

186

theexistenceofpolargroupsinthismolecule(Linetal.2004).However,whenSpan20and

187

Tween20wereincorporatedtothemaltodextrinsolutions,theydidnotaffecttheconductivity,

188

showingthattheeffectofthesesurfactantsinthesolutionconductivityisverylimitedanditis

Ac ce p

te

d

M

an

us

cr

ip t

163

9

Page 9 of 27

onlyrelevantwhenthesolutionpresentsverylowconductivity.Incontrast,additionoflecithin

190

ledtohigherconductivityinbothcarbohydratesolutions.Thisfactwasrelatedtothe

191

zwitterionicnatureofthelecithinwhichpresentsasymmetricpositiveandnegativeelectric

192

charges.Thesechargesweredissociatedinaqueoussolutionandthus,ledtoanincreaseof

193

theelectricalconductivity(Hunley,England&Long,2010).Concerningtheviscosity,itwas

194

seenthatverylowvalueswereobtainedregardlesstheabsenceorpresenceofthe

195

surfactants.Theseresultswereexpected,sincethelowmolecularweightcarbohydratesused

196

inthisstudywouldrequiregreaterconcentrationstoachievecomparablesolutionviscosities

197

tohighmolecularweightpolymers.Inparticular,theadditionofSpan20andTween20hardly

198

increasedtheviscosityvalues.However,additionoflecithinincreasedthesolutionsviscosity

199

fromca.2to5cP, probablybecausetheinteractionsbetweenthecarbohydratesandtheionic

200

surfactantwerestrongerthanthosewiththenon‐ionicsurfactants.Nevertheless,lowviscosity

201

valuesareneededforelectrospraying,sincehigherviscosityfavorstheformationoffibers

202

insteadofsphericalcapsules(beads)(Fong,Chun&Reneker,1999).Finally,Table2showsthe

203

surfacetensionofthedifferentsolutionsassayed.Itwasobservedthatsurfacetensionvalues

204

ofsurfactant‐freesolutionswereover50mN/m,duetothehighsurfacetensionofwater,

205

whichwasthesolventusedinthesolutions.Additionofthedifferentsurfactantsledtoa

206

decreaseinsurfacetension,reachingtheplateauvaluesobtainedfortheCMCofthedifferent

207

surfactants.Ingeneral,itcanbestatedthatincreasingthesurfactantconcentrationledto

208

greaterconductivityandviscosityvalues.

209

210

INSERTTABLE2ABOUTHERE

211

212

3.3Morphologyoftheelectrosprayedcarbohydrates

213

Theelectrosprayingofallthesolutionswasperformedunderthesameprocessingconditions

214

(cf.section2.5).Initially,thecarbohydrate‐aqueoussolutionswithoutsurfactantswere

Ac ce p

te

d

M

an

us

cr

ip t

189

10

Page 10 of 27

electrosprayedanditwasobservedthatalthoughthecommercialresistantstarchformed

216

sphericalcapsuleswithsizesrangingfromafewnmto∼2µmwithanaveragesizeof0.6±0.3

217

µm(imagenotshown),extensivedroppingoccurredduetounstableelectrospraying.Onthe

218

otherhand,itwasnotpossibletoobtainanyelectrosprayedstructurefromthemaltodextrin

219

aqueoussolution.Theseresultscanbeexplainedbythephysicalpropertiesofthesolutions.As

220

itwascommentedbefore,bothcarbohydratesolutionspresentedhighsurfacetensionand

221

lowviscosityvalues;however,resistantstarchdidnotgreatlyincreasetheconductivityofthe

222

solution,whiletheadditionofmaltodextrinproducedveryhighconductivityvalues.Whenthe

223

highvoltage(typicallyintherangeof0–30kV)isappliedtothespinneretfromwherethe

224

solutionisejected,thesurfaceofthefluiddropletheldbyitsownsurfacetensiongets

225

electrostaticallychargedatthespinnerettip.Stableelectrosprayingorelectrospinningis

226

knowntobeattainedwhentheelectrostaticforcesinsidethedroplet(arisingfrommutual

227

electrostaticrepulsionbetweenthesurfacechargesandtheCoulombforceappliedbythe

228

externalelectricfield),arestrongenoughtoovercomethesurfacetensionofthepolymer

229

solution,forcingtheejectionoftheliquidjet(Zhang&Kawakami,2010).Beforetheejectionof

230

theliquidjet,andasaconsequenceofthementionedelectrostaticinteractions,theliquid

231

dropelongatesintoaconicalobjectknownastheTaylorcone.Thus,inthecaseofthe

232

resistantstarch,theelectricalconductivityofthissolutionwasinsufficient,atthevoltage

233

applied,toovercomethehighsurfacetensionand,consequently,theTaylorconedidnotform

234

anddroppingofthesolutionoccurred.Incontrast,whenthecoulombicrepulsionsaretoohigh

235

andovercometheviscoelasticforces,lesschainentanglementstakeplaceduring

236

electrosprayingand,thus,verysmallparticlesornon‐definedstructuresareobtained(Bocket

237

al.,2012).Thisseemedtobethecaseforthemaltodextrinsolution,asitsveryhighelectrical

238

conductivitycompletelyhinderedtheelectrosprayingprocess.

239

Theadditionofsurfactantstothecarbohydrateaqueoussolutionsproducedadecreasein

240

surfacetensionwhichfavoredtheformationofelectrosprayedstructures.Figure1showsthe

Ac ce p

te

d

M

an

us

cr

ip t

215

11

Page 11 of 27

SEMimagesandcorrespondingsizedistributionofthematerialsobtainedfromthe

242

electrosprayingofthedifferentresistantstarchsolutions.FromFigures1Aand1Bitwasseen

243

that,regardlessofconcentration,whenSpan20wasaddedtotheresistantstarchsolution,

244

threedifferentcapsulesizepopulationswerefound,althoughthestructuresweresmallerand

245

morehom*ogeneousinsizewhen30%ofthesurfactantwasadded.Figures1Cand1Dshow

246

thattheadditionof5%ofTween20alsogeneratedthreepopulationswithrespecttothe

247

capsulesdiameter.However,whentheconcentrationwasincreasedto30%,onlytwodifferent

248

sizedistributionsandsmallercapsuleswereattained.Ontheotherhand,whenlecithinwas

249

includedinthesolutions,onlyonepopulationwithrespecttothecapsule’sdiameterswas

250

seen(cf.Figures1Eand1F).Moreover,theparticlesizewasgreatlyreducedwhencompared

251

tocapsulesobtainedfromthecarbohydratewithoutsurfactant.Thus,theaveragesizeinthis

252

casewas0.3±0.1µmand0.2±0.1µmwhen5%and30%oflecithinwasaddedrespectively.

253

Thevariationsobservedbetweenthedifferentstructurescanbemainlyattributedtothe

254

electricalconductivityofthesolutions.Itisknownthathigherconductivityleadstoadecrease

255

insizebecauseCoulombicrepulsionforcescompetewiththeviscoelasticforcesofthesolution

256

anddisentanglemoreeasilythepolymernetworkformedduringelectrospraying.Inother

257

words,increasingconductivitymakesiteasierforthesolutiontobebrokenupintosmaller

258

droplets(Gañan‐Calvo,Davila&Barrero,1997;Bocketal.,2012).

259

260

INSERTFIGURE1ABOUTHERE

261

262

Regardingthemaltodextrinstructures,Figure2showstheSEMimagesandcorrespondingsize

263

distributionofthematerialsobtained.Itisobservedthattheadditionofnon‐ionicsurfactants

264

allowedtheformationofparticlesfromafewnmto500nm(cf.Figures2Ato2D).Therange

265

ofsizedistributionwasconsiderablynarrowerthanfortheresistantstarchmaterialsand,in

266

mostcases,morethan50%oftheparticleswerearound200nminsize.Thisfactwas

Ac ce p

te

d

M

an

us

cr

ip t

241

12

Page 12 of 27

explainedfromthesurfacetensiondecreaseproducedbythesurfactants.Viscoelasticand

268

electricalforcesmustovercomethesurfacetensioneffectinordertoobtainadefined

269

structure.Whensurfactantswerenotaddedtothemaltodextrinsolution,thedropletsformed

270

ontheneedletipgrewuntilitsmasswaslargeenoughtoescapeandelectrosprayingcouldnot

271

occur(Xu&Hanna,2006).However,theadditionofthenon‐ionicsurfactantsreducedthe

272

surfacetensionand,thus,aconicalmeniscuswasformedontheneedletip.Themeniscus

273

furtherdeformedandbrokeintodropletswithsmallparticlesizesandnarrowsizedistribution

274

duetotheelectrostaticforceintroducedbythemaltodextrin.Nevertheless,when30%of

275

Tween20wasaddedtothesolution,theelectricalconductivityincreasedanddifferentcapsule

276

morphologieswereobtained,probablybecausethehighelectricalforcesfavoredweak

277

entanglementsinthepolymer(Bocketal.,2012).Theadditionoflecithinproducedan

278

excessiveincreaseintheconductivitywhichcompletelyhinderedcapsuleformation.

279

280

INSERTFIGURE2ABOUTHERE

281

282

Itisinterestingtonotethat,apartfromthecapsularmorphologygenerated,additionof

283

surfactantsalsoledtoneedle‐likemorphologiesinbothcarbohydratematrices,thus

284

confirmingthatadditionoftheseamphiphilicmolecules,whichdecreasedthesurfacetension

285

oftheaqueoussolutions,considerablyenhancedchainentanglements.

286

Ingeneral,fromthemorphologyofthestructuresobtained,itcanbestatedthatnon‐ionic

287

surfactantsaremoresuitableforgeneratingencapsulationstructuresfromlowmolecular

288

weightcarbohydratepolymers,andthatthesizeandsizedistributioncanbemodifiedbythe

289

typeandamountofsurfactantadded.

290

291

3.4Infraredspectraoftheencapsulates

Ac ce p

te

d

M

an

us

cr

ip t

267

13

Page 13 of 27

ATR‐FTIRanalysesweredoneinordertocharacterizethemolecularorganizationofthe

293

structuresattained,aswellastoconfirmthepresenceofthesurfactantsinthecarbohydrate

294

structures.Infirstplace,theregionfrom800to1200cm‐1wasanalyzedforallthematerials

295

obtained.Thisareapresentsthecharacteristicvibrationalbandsofthecarbohydrates,

296

correspondingtothestretchingvibrationsofC‐OandC‐Cgroups,andthebendingvibrationof

297

C‐O‐H(Wolkers,Oliver,Tablin,&Crowe,2004;Kacurakova&Mathlouthi,1996).FromFigure3

298

itwasobservedthatwhensurfactantswereaddedtotheresistantstarch,thesebandswere

299

shiftedbyapproximately2‐6cm‐1suggestingthattherewasachemicalinteractionbetween

300

thecarbohydrateandthesurfactants.Specifically,themostnotedshiftwasobservedforthe

301

bandwhicharoseat1006cm‐1intheresistantstarch(cf.Figures3Ato3C).Thisbandwas

302

shiftedtowardshigherwavenumbersinthesurfactant/polymercapsules,whichcouldmean

303

strongerhydrogenbondingduetotheinteractionofthecarbohydratewiththesurfactants

304

(Wolkersetal.,2004).Itisinterestingtonotethatgreaterbandshiftswererelatedtosmaller

305

capsulemeandiameters,whichmaybeprobablyexplainedbythegreaterspecificsurface

306

presentinthematerialcontainingsmallercapsules.Moreover,inthisspecificcarbohydrate

307

polymer,i.e.theresistantstarch,aclearchangeinbandshapewasalsoobservedinthe

308

spectralrange950‐1050cm‐1,whichalsoresultedinnarrowerbandsintheencapsulates

309

containingthesurfactants,indicatingthatsurfactantadditionledtogreatermolecularorder.

310

Onthecontrary,forthemaltodextrinstructures(Figures3Eto3F),thecharacteristic

311

carbohydratebandshardlyshiftedwiththeincorporationofthesurfactants,indicatingthat

312

theirinteractionwiththepolymermaybelessintensethaninthepreviouscase.Nevertheless,

313

itwasseenthatlecithinproducedthegreatestbanddisplacementsforbothpolymermatrices

314

probablybecauseitisazwitterionicsurfactantwhichpresentedastrongerinteractionwiththe

315

polymers(Linetal.2004).

316

317

INSERTFIGURE3ABOUTHERE

Ac ce p

te

d

M

an

us

cr

ip t

292

14

Page 14 of 27

319

Furthermore,themostcharacteristicbandofthesurfactantswhichwasnotoverlappedwith

320

thecarbohydratebandswasconsideredtodeterminetheeffectoftheconcentrationofthe

321

surfactantsintheelectrosprayedmaterial.Figure4showsthecapsule’sspectrafrom1800to

322

1600cm‐1wherethebandcorrespondingtothecarbonylgroup,ataround1740cm‐1,

323

attributedtothesurfactantswaslocated.Fromthespectra,itwasobservedthatthe

324

surfactantswereincorporatedinallthestructures,sincethispeakappearedinallthe

325

materials.Itisworthnotingthatthelecithinbandshowedthegreatestshiftwhenitwas

326

combinedwiththepolymers,thusconfirmingthestrongerinteractionbetweentheionic

327

surfactantswiththepolymers.Moreover,thispeakcouldalsorevealtheamountofsurfactant

328

includedintheinitialsolutions,sinceitwasmoreintensewiththeincreasingconcentrationof

329

thesurfactant.

330

331

INSERTFIGURE4ABOUTHERE

332

333

4.Conclusions

334

Inthisworkitisdemonstratedthatadditionofsurfactantsconsiderablyimprovesthe

335

electrosprayingoflowMwcarbohydrateaqueouspolymersolutions.Specifically,ultrathin

336

capsulesmadefromacommercialresistantstarchandamaltodextrinwithSpan20,Tween20

337

orlecithinweredeveloped.Thiswasmainlyduetoareductioninthesurfacetensioncaused

338

bysurfactantaddition,whichstabilizedtheelectrosprayingprocess.However,ithasalsobeen

339

shownthatthetypeandamountofsurfactantgreatlyinfluencedthemorphologyandsize

340

distributionoftheencapsulationstructuresgenerated.Ingeneral,itcanbestatedthatnon‐

341

ionicsurfactantsweremoresuitablefortheelectrosprayingoflowMwcarbohydrate

342

solutions,aselectricallychargedsurfactantsgaverisetofusedandtoosmallstructures.FTIR

343

resultsshowedthatthesurfactantswereeffectivelyincorporatedinthecarbohydrate

Ac ce p

te

d

M

an

us

cr

ip t

318

15

Page 15 of 27

polymersandwhilegreatermolecularorderanddifferentcapsulesizeswereobtainedfrom

345

resistantstarchsolutionsbychangingthetypeandconcentrationofsurfactant,onlyverysmall

346

structureswereformedfrommaltodextrinsolutions,duetotheirhighelectricalconductivity.

347

Theseresultsarehighlyinterestingforthedevelopmentofencapsulationstructuresforfood‐

348

relatedapplicationswheretheuseofaqueoussolutionsismandatory.

349

350

Acknowledgements

351

A.Lopez‐RubioisrecipientofaRamonyCajalcontractfromtheSpanishMinistryofScience

352

andInnovation.TheauthorsthanktheSpanishMICINNprojectsAGL2012‐30647,FUN‐C‐FOOD

353

(CSD2007‐00063),andtheEUprojectoftheFP7FRISBEEforfinancialsupport.Authorswould

354

alsoliketoacknowledgetheCentralServicesforExperimentalInvestigationSupporting(SCSIE)

355

oftheUniversityofValenciafortheelectronicmicroscopyservice.

M

an

us

cr

ip t

344

Ac ce p

te

d

356

16

Page 16 of 27

References

357

Aceituno‐Medina,M.,Lopez‐Rubio,A.,Mendoza,S.,&Lagaron,J.M.(2013).Developmentof

358

novelultrathinstructuresbasedinamaranth(Amaranthushypochondriacus)proteinisolate

359

throughelectrospinning.FoodHydrocolloids31,289‐298.

360

Bhattarai,N.,&Zhang,M.(2007).Controlledsynthesisandstructuralstabilityofalginate‐

361

basednanofibers.Nanotechnology18,455601.

362

Bock,N.,Dargaville,T.R.&Woodruff,M.A.(2012).Electrosprayingofpolymerswith

363

therapeuticmolecules:Stateoftheart.ProgressinPolymerScience37,1510‐1551

364

Bonino,C.A.,Krebs,M.D.,Saquing,C.D.,Jeong,S.I.,Shearer,K.L.,Alsberg,E.,Khan,S.A.(2011).

365

Electrospinningalginate‐basednanofibers:Fromblendstocrosslinkedlowmolecularweight

366

alginate‐onlysystems.CarbohydratePolymers85,111‐119.

367

Chou,D.K.,Krishnamurthy,R.,Randolph,T.W.,Carpenter,J.F.,Manning,M.C.(2005).Effectsof

368

Tween20andTween80onthestabilityofalbutropinduringagitation.Journalof

369

PharmaceuticalSciences94,1368‐1381.

370

Fong,H.Chun,I.&Reneker,D.H.(1999).Beadednanofibersformedduringelectrospinning.

371

Polymer40,4585‐4592.

372

Herricks,T.E.,Kim,S.‐H.,Kim,J.,Li,D.,Kwak,J.H.,Grate,J.W.,Kim,S.H.,&Xia,Y.(2005).Direct

373

fabricationofenzyme‐carryingpolymernanofibersbyelectrospinning.JournalofMaterials

374

Chemistry15,3241‐3245.

375

Hong,Y.,Fan,H.,&Zhang,X.(2009).Synthesisandproteinadsorptionofhierarchical

376

nanoporousultrathinfibers.JournalofPhysicalChemistryB113,5837‐3842.

377

Hou,Z.,Yang,P.,Lian,H.,Wang,L.,Zhang,C.,Li,C.,Chai,R.,Cheng,Z.,&Lin,J.(2009).

378

Multifunctionalhydroxyapatitenanofibersandmicrobeltsasdrugcarriers.Chemistry‐A

379

EuropeanJournal15,6973‐6982.

Ac ce p

te

d

M

an

us

cr

ip t

356

17

Page 17 of 27

Hunley,M.T.,England,J.P.&Long,T.E.(2010).Influenceofcounteraniononthethermaland

381

solutionbehaviorofPoly(2‐(dimethylamino)ethylmethacrylate)‐BasedPolyelectrolytes.

382

Macromolecules43,9998‐10005.

383

Kacurakova,M.&Mathlouthi,M.(1996).FTIRandlaser‐Ramanspectraofoligosaccharidesin

384

water:characterizationoftheglycosidicbond.CarbohydrateResearch,284,145–157.

385

Kim,H.‐W.,Lee,H.‐H.,&Knowles,J.C.(2006).Electrospinningbiomedicalnanocomposite

386

fibersofhydroxyapatite/poly(lacticacid)forboneregeneration.JournalofBiomedical

387

MaterialsResearchPartA,79A,643‐649.

388

Kriegel,C.,Kit,K.M.,McClements,D.J.,&Weiss,J.(2009).Influenceofsurfactanttypeand

389

concentrationonelectrospinningofchitosan‐poly(ethyleneoxide)blendnanofibers.Food

390

Biophysics4,213‐228.

391

Kriegel,C.,Kit,K.M.,McClements,D.J.,&Weiss,J.(2010).Nanofibersascarriersystemsfor

392

antimicrobialmicroemulsions.II.Releasecharacteristicsandantimicrobialactivity.Journalof

393

AppliedPolymerScience118,2859‐2868.

394

Lin,T.,Wang,H.X.,Wang,H.M.,&Wang,X.G.(2004).Thechargeeffectofcationicsurfactants

395

ontheeliminationoffibrebeadsintheelectrospinningofpolystyrene.Nanotechnology15,

396

1375–1381.

397

Lopez‐Rubio,A.&Lagaron,J.M.(2012).Wheyproteincapsulesobtainedthrough

398

electrosprayingfortheencapsulationofbioactives.InnovativeFoodScienceandEmerging

399

Technologies13,200‐206.

400

Nagarajan,R.,Drew,C.,&Mello,C.M.(2007).Polymer‐micellecomplexasanaidto

401

electrospinningnanofibersfromaqueoussolutions.TheJournalofPhysicalChemistryC111,

402

16105‐16108.

403

Stijnman,A.C.,Bodnar,I.&HansTromp,R.(2011).Electrospinningoffood‐grade

404

polysaccharides.FoodHydrocolloids25,1393‐1398.

Ac ce p

te

d

M

an

us

cr

ip t

380

18

Page 18 of 27

Wolkers,W.F.,Oliver,A.E.,Tablin,F.&Crowe,J.H.(2004).AFourier‐transforminfrared

406

spectroscopystudyofsugarglasses.CarbohydrateResearch339,1077‐1085.

407

Xie,J.,Li,X.&Xia,Y(2008).Puttingelectrospunnanofiberstoworkforbiomedicalresearch.

408

MacromolecularRapidCommunications29,1775‐1792.

409

Xu,Y.&Hanna,M.A.(2006).Electrosprayencapsulationofwater‐solubleproteinwith

410

polylactide.Effectsofformulationsonmorphology,encapsulationefficiencyandrelease

411

profileofparticles.InternationalJournalofPharmaceutics320,30‐36.

412

Zhang,S.L.&Kawakami,K.(2010).One‐steppreparationofchitosansolidnanoparticlesby

413

electrospraydeposition.InternationalJournalofPharmaceutics.397,211‐217.

us

cr

ip t

405

Ac ce p

te

d

M

an

414

19

Page 19 of 27

FIGURECAPTIONS

415

Figure 1. Selected SEM images and their corresponding capsule size distribution of resistant

416

starch‐based structures with the different surfactants: A) 5% Span20; B) 30% Span20; C) 5%

417

Tween20;D)30%Tween20;E)5%lecithinandF)30%lecithin.

418

419

Figure 2. Selected SEM images and their corresponding capsule size distribution of

420

maltodextrin‐basedstructureswithdifferentsurfactants:A)5%Span20;B)30%Span20;C)5%

421

Tween20;D)30%Tween20;E)5%lecithinandF)30%lecithin.

422

423

Figure3.ATR‐FTIRspectrafrom1200to880cm‐1 forthepurecarbohydrate(dottedline),the

424

surfactants(dashedline),thecarbohydratewith5%ofsurfactant(greyline)andwith30%of

425

surfactant (black line) for: (A) resistant starch/Span20; (B) resistant starch/Tween20; (C)

426

resistant starch/lecithin; (D) maltodextrin/Span20; (E) maltodextrin/Tween20; and (F)

427

maltodextrin/lecithin.

428

429

Figure 4. ATR‐FTIR spectra from 1600 to 1800 cm‐1 for the pure carbohydrate (dotted line),

430

thesurfactants(dashedline),thecarbohydratewith5%ofsurfactant(greyline)andwith30%

431

of surfactant (black line) for: (A) resistant starch/Span20; (B) resistant starch/Tween20; (C)

432

resistant starch/lecithin; (D) maltodextrin/Span20; (E) maltodextrin/Tween20; and (F)

433

maltodextrin/lecithin(F).

434

Ac ce p

te

d

M

an

us

cr

ip t

414

435

20

Page 20 of 27

Table1.Criticalmicelleconcentration(CMC)ofthedifferentsurfactantsinaqueoussolutionin

436

absenceandpresenceofthecarbohydrates.

437

438

CMCofsurfactant(mM) Span20 Tween20 Lecithin 0.04 0.01 0.12 0.1 0.03 0.16 0.1 0.05 0.16

Ac ce p

te

d

M

an

us

439

cr

Carbohydrate(wt‐%) Aqueoussolution Resistantstarch20% Maltodextrin20%

ip t

435

21

Page 21 of 27

439

Table2.Conductivity,viscosityandsurfacetensionofthecarbohydrate‐surfactantsolutions.

440

Surfactant Conductivity Surfactant concentration (µS) (%) 0 17±1 ‐ 5 33±1 Span20 30 73±2 Resistant 5 35±2 starch Tween20 30 136±2 5 209±3 Lecithin 30 862±6 0 798±1 ‐ 5 790±1 Span20 30 786±2 Maltodextrin 5 802±3 Tween20 30 843±7 5 928±6 Lecithin 30 1776±8

cr

us

2.0±0.5 2.3±0.1 2.5±0.7 2.2±0.6 2.8±0.1 2.2±0.1 5.4±0.9 2.2±0.2 2.2±0.1 2.4±0.1 2.2±0.5 2.3±0.2 2.8±0.2 5.3±0.6

Surface Tension (mN/m) 56.1±1.6 26.1±0.8 25.9±0.5 31.0±0.1 35.4±0.9 29.9±0.3 27.5±2.3 52.7±4.1 25.3±0.8 24.7±0.5 35.1±0.4 35.0±3.5 32.5±1.3 26.2±0.3

ip t

Viscosity (cP)

M

an

Matrix

Ac ce p

te

d

441

22

Page 22 of 27

Highlights

442

‐ElectrosprayingwasusedtodeveloplowMwcarbohydrate‐basedcapsules

443

‐SurfactantadditionabovetheCMCallowedcapsuleformationfromaqueoussolutions

444

‐Surfactanttypeandconcentrationinfluencedcapsulesizeandmorphology

445

‐Changesincapsulesizeuponsurfactantadditionwererelatedtosolutionproperties

446

‐Smallerandmorehom*ogeneouscapsulesobtainedincreasingsurfactantconcentration

447

Ac ce p

te

d

M

an

us

cr

ip t

441

23

Page 23 of 27

Ac

ce

pt

ed

M

an

us

cr

i

Figure 1_reviewed

Page 24 of 27

Ac

ce

pt

ed

M

an

us

cr

i

Figure 2_reviewed

Page 25 of 27

Ac

ce

pt

ed

M

an

us

cr

i

Figure 3

Page 26 of 27

Ac

ce

pt

ed

M

an

us

cr

i

Figure 4

Page 27 of 27

Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. - PDF Download Free (2024)
Top Articles
Best viral moments from 2024 Paris Olympics
Suni Lee pokes fun at herself falling off balance beam in Olympics TikTok trend
Funny Roblox Id Codes 2023
Www.mytotalrewards/Rtx
San Angelo, Texas: eine Oase für Kunstliebhaber
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Steamy Afternoon With Handsome Fernando
fltimes.com | Finger Lakes Times
Detroit Lions 50 50
18443168434
Newgate Honda
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
978-0137606801
Nwi Arrests Lake County
Missed Connections Dayton Ohio
Justified Official Series Trailer
London Ups Store
Committees Of Correspondence | Encyclopedia.com
Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
How Much You Should Be Tipping For Beauty Services - American Beauty Institute
How to Create Your Very Own Crossword Puzzle
Apply for a credit card
Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
Ups Print Store Near Me
How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
University Of Michigan Paging System
Dashboard Unt
Access a Shared Resource | Computing for Arts + Sciences
2023 Ford Bronco Raptor for sale - Dallas, TX - craigslist
Black Lion Backpack And Glider Voucher
Gopher Carts Pensacola Beach
Duke University Transcript Request
Nikki Catsouras: The Tragic Story Behind The Face And Body Images
Kiddie Jungle Parma
Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
The Latest: Trump addresses apparent assassination attempt on X
In Branch Chase Atm Near Me
Appleton Post Crescent Today's Obituaries
Craigslist Red Wing Mn
American Bully Xxl Black Panther
Ktbs Payroll Login
Jail View Sumter
Thotsbook Com
Funkin' on the Heights
Caesars Rewards Loyalty Program Review [Previously Total Rewards]
Marcel Boom X
Www Pig11 Net
Ty Glass Sentenced
Game Akin To Bingo Nyt
Ranking 134 college football teams after Week 1, from Georgia to Temple
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 6432

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.